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Abstract-The two-dimensional steady heat flow in bodies with different cross-sections and isothermal 
boundaries is a problem that has been investigated intensively in the literature. For the cross-section of 
two concentric circles the analytical solution of the shape factor as a function of the ratio of the outer 
diameter to the inner diameter is well known and can be found in most textbooks on heat transfer. For 
some simple well defined geometries it is possible to calculate the shape factor by the method of conformal 
mapping. But for arbitrarily shaped cross-sections numerical methods or correlations fitted to measured 
or calculated values have to be used. We applied the Method of Finite Elements and the Method of Finite 
Differences to calculate shape factors for cross-sections bounded by concentric circles and squares. By 
developing the shape factor for the investigated cross-sections analytical approximations for the shape 
factor are obtained. The approximations fulfil limiting cases and are close to the exact solutions when 

being fitted to the numerical values. 0 1998 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 
de = -1gdz4. (1) 

To calculate the two-dimensional heat flow 0 through 
a solid shell of an arbitrarily shaped cross-section and After introduction of a dimensionless temperature 

a length 1 perpendcular to the cross-section where the 
two boundaries Ai and A,, are at different but constant 

T- T,, @s_ 

temperatures Ti and To (see Fig. 1) the temperature 
T,- To (2) 

distribution has to be known. The problem is equation (1) may be integrated to give 
described by Fourier’s equation for conductive heat 
flow : Q=l 

s( > 
e dA(T,- Ti). 

A aa 
(3) 

With the shape factor S, introduced by Langmuir [l], 
defined as 

(4) 

the solution of equation (1) may then be expressed as 

e = rCi(T,- TJ. (5) 

For a two-dimensional problem S does not depend on 
the length 1 of the object and therefore one may define, 
by dividing the original definition (4) by 1, a shape 
factor S, 

(6) 

to obtain the heatflux per unit length from equation 
(5) : 

Fig. 1. Arbitrarily shaped cross-section, different but uniform Q/l = IS,(T~-Ti). (7) 
temperatures at the inner and outer surface Ai and A,. 

To estimate SI the shape factor may be interpreted as 
the ratio of the average surface area 2 for conduction 

t Author to whom correspondence should be addressed. to the average length s of the conduction path, 
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NOMENCLATURE 

A surface area [m’] X ratio of the outer diameter r0 to the 
A average surface area [equation (8)] inner diameter r,. 

b*l 
4 coefficients in equation (10) Greek symbols 
C, constants a heat conductivity [W/(m K)] 
1 length [m] 0 dimensionless temperature. 
n grid density, see text for details [l] 
n unit vector perpendicular to a surface Subscripts 

I4 anal analytical 
e heat flow Iw] talc calculated 
R, shape resistance (l/S,) cc concentric circles 

k, 
radius (Fig. 2) [m] cs square within the centre of a circle 
shape factor [equation (6)] i inner boundary 

S asymptotic value for the shape factor 0 outer boundary 
[equation (lo)] SC circle within the centre of a square 

s average distance [equation (8)] [m] sP point within the centre of a square 
T temperature [K] ss concentric squares. 

s =iQ_ 
I 

3 R,' (8) 

because for the simplest case of a plan plate the heat- 
flux is proportional to the surface area but reverse 
proportional to the thickness of the plate. 

Instead of Si its reciprocal R,, know as the shape 
resistance, is often used. 

Once St is known for a two-dimensional shape with 
constant heat conductivity and each boundary on uni- 
form temperature, the heat flow may be easily cal- 
culated by use of equation (7). The problem no longer 
is the integration of equation (l), but the calculation 
of S, from equation (6). This can be done analytically 
for a few simple shapes [2, 31, but is impossible for 
most. Empirical correlations are given by Smith et al. 
[4] for the arrangements of two concentric squares or 
a circle within the centre of a square. These cor- 
relations are only valid for a certain range of x defined 
by 

2r, 
x=r, 

as the ratio of the outer diameter 2r, to the inner 
diameter 2r, (see Fig. 2). The parameters of the cor- 
relations given by Smith et al. are fitted to experiments 
on electrical flow through paper with constant elec- 
trical conductivity. For some values of x numerical 
results are given. In this work numerical methods are 
used to calculate the shape factors for three different 
shaped cross-sections. These are (see Fig. 2) : 

??concentric squares 
??circle within the centre of a square 
??square within the centre of a circle. 

Analytical approximations for the shape-factor as a 

function of x are presented. The analytical expressions 
are obtained by the ratio of the average surface area 
(logarithmic mean) to an average length of the con- 
duction path (logarithmic, arithmetic or geometric 
mean). Limiting cases for x tending to inlinity and 
discrete values obtained by numerical calculations 
with the Method of Finite Elements (FEM) or Finite 
Differences (DIF) are used to fit constants of the 
approximations. 

2. CALCULATION 

The Method of Finite Elements (FEM) is well estab- 
lished to calculate heat transfer problems in a 
geometry with curved boundaries, whereas the 
method of Finite Differences (DIF) is often used to 
calculate heat transfer problems in a geometry with 
straight boundaries. For FEM the geometry is divided 
into quadrilateral elements to calculate the tem- 
perature distribution and the heat flow through the 
boundaries. Laplace’s equation is solved with the aid 
of the program package FIDAP Rel. 7.5. In Fig. 3 a 
mesh with 400 elements for the geometry of concentric 
squares and x = 2 is shown. For reasons of symmetry 
only one eighth of the shape has to be considered. The 
calculated heat flow at the inner and outer boundary 
has to be the same but is different due to errors in 
numerical integration. A method has to be developed 
to find the “exact value” of the heat flow and from 
this value for the shape factor S,. Calculated values 
for Si should be exact and change few for a mesh with 
the number of elements tending to infinity (high grid 
density). Therefore an asymptotic function is chosen 
to describe the dependence of shape-factor on grid 
density equation (lo), 
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Fig. 2. Considered fshapes and area of numerical calculation. 

a, #O 

S, =xl+a, *exp(-az*n”3) with a2 > 0, 

ug > 0 
(10) 
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Fig. 3. Mesh plot and boundary conditions for the arrange- 
ment of concentric squares with x = 2. 

where3, is the asymptotic limit of the shape factor, 
assumed to be near the exact value and n is a measure 
for the grid density. It is defined for Finite Elements 
as the number of corner-nodes on a boundary edge 
being equal for all four sides (Fig. 3). The number of 
elements in the mesh is therefore n2. For the Finite 
Differences all elements have the same extension in 
length. The grid density here is defined as the number 
of nodes on the inner boundary r,. For a given ratio x 
of the outer diameter to the inner diameter different 
grid densities are used to calculate S, from the heat 
flow at the inner and outer boundary. The coefficients 
ai are fitted to the different values of S,. The values of 
3, so obtained as a function of x are used to fit the 
analytical approximations. 

2.1. Validation of the numerical methods 
An exact solution for S, as a function of x is known 

for two concentric circles. The average surface area A 
is 27~1 times the logarithmic mean of the outer and 
inner radii and the length of the conduction path s is 
the difference between inner and outer radius. This 
leads to 

s 27~ 
1,c.z - 

211 _ Wr,-- ri> 
=- 

s 
In ‘ro (rO-r,) (1 In (x) (11) 

Discrete values for S, as a function of the grid density 
obtained by numerical calculation are shown in Fig. 
4 as symbols. The lines are the fitted functions accord- 
ing to equation (10). The values of?$ calculated by 
the described method fulfil the condition that they 
come close to the exact value obtained from equation 
(11). Comparing results with the same grid density the 
numerical values are in better agreement with the 
exact solution for small values of x than they are 
for larger ones. The maximum relative absolute error 
I%J&,anal- 11 for l/n -+ 0 was 0.0025 at x = 10, with 
S ,,ca,c obtained from equation (10). The heat flow at the 
inner boundary (the circles in Fig. 4) is underestimated 
whereas the heat flow at the outer boundary (the tri- 
angles) is overestimated for low grid densities. Values 
of S, would be calculated too high or too low, respec- 
tively, depending on geometry, consideration of inner 
or outer boundary and numerical method, without 



1440 M. NICKOLAY et al. 

Qalc 
%anal 

1.01 

1 

0.98 

0.9 

0 l/n 0.1 

Fig. 4. Shape factors calculated by FEM, divided by the 
analytical solution from equation (5) as a function of x and 
the reciprocal of the grid density n for the arrangement of 
two concentric circles. Triangle : calculated from heat flow 
at outer boundary. Circle : calculated from heat flow at inner 

boundary. Lines : equation (4). 

approximating an asymptotic value. The method 
described above is used to obtain asymptotic values 
S, with the Method of Finite Elements as well as for 
the Method of Finite Differences. The latter method 
is only used for the geometry of two concentric 
squares. In this case the two numerical methods are 
validated against each other (see Section 3.1). 

3. RESULTS 

For the three cross-sections shown in Fig. 2 it might 
be possible to find an analytical solution by con- 
formal-mapping using a Schwarz-Cristoffel integral 
(the remarks of the reviewer concerning this point, 
are gratefully acknowledged) but we did not try this 
method here. The method used is 

(1) compute numerical values as described above, 
which means increase n and fit equation (lo), to 
derive an asymptotic value for &, 

(2) find a suitable first analytical approximation of 
S, from the ratio between the logarithmic mean 
surface area and a logarithmic, arithmetic or geo- 
metric mean length s of the conduction path, 

(3) take limiting cases into account, 
(4) modify some coefficients in the approximation 

slightly to fit against numerical results with the 
method of least square minimisation or by mini- 
misation of the maximum relative error. 

-_-- 
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Fig. 5. Geometric consideration for the average length 3. 

3.1. Concentric squares 
The average length s is obtained by a simple geo- 

metric consideration (see Fig. 5) as a weighted arith- 
metic mean distance 

between the shortest way for conduction (rO-ri) and 
the longest (r,- ri) * (1+&)/2. This gives the fol- 
lowing expression for the shape factor. 

A comparison with numerical values obtained by the 
Method of Finite Differences and Finite Elements 
gives a better fit by modifying (and simplifying) equa- 
tion (13) to: 

This equation fits our numerical results with a relative 
error better than 0.005 for a computed range of x 
from 1 .Ol to 10. For FEM calculations the maximum 
number of Elements in the mesh was 6400 and for 
DIF calculations n was up to 1500. In the worst case 
for x = 10 the relative difference of the values cal- 
culated for Si by the use of equation (10) to their mean 
value (&n, +%,,)/2 was better than 0.005. In Fig. 
6 the shape resistance as a function of x is shown. As 
a comparison measured and calculated values from 
Smith et al. [4] and Langmuir et al. [S] are shown. 
The two empirical correlations from Smith et al. [2- 
4] being valid only for a certain range of x are fitted 
to his experimental data and are also shown in Fig. 
6. Their numerical values obtained by a relaxation 
method vary with the number of elements used. The 
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X 

Fig. 6. Shape factor as a function of x for two concentric squares. 

10 

difference between their numerical and measured obtained by two different methods do match nearly 
values and our numerical values may be regarded exactly. The arrows show the tendency of our numeri- 
more in detail for x = 2. Our numerical values cal values with raising grid density toward the asymp- 
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totic value of?$ (see Fig. 4). It can be estimated that 
the numerical value of Sr of Smith et al. should have 
been lower (higher R,) with a higher number of 
elements. 

3.2. Circle within the centre of a square 
The average length s in this case cannot be found 

like for concentric squares, because the circle has no 
corner. Therefore, we tried arithmetic, geometric and 
logarithmic mean and found, that for the average 
length s being the geometric mean of the maximum 
and minimum distance between the inner and outer 
surface the resulting first estimating expression for the 
shape factor 

4 
2x -x- 1 

Sl,sc 71 = . 
ln(x)+ln ; J(x- 1)(42x- 1) 

0 

(15) 

fits our numerical calculations best. 
Replacing some numerical values by coefficients Ci 

gives 

2ir 
Sl,sc = 

&x-l 
ln(x)+C, ‘J (x-l)(Csx-1)’ 

(16) 

For x tending to infinity equation (16) must be equal 
to the equation for a point source within the centre of 
a square, of which the analytical solution is [2] 

2rl 
Sl,SP = In(x) + C, (17) 

with C, being an asymptotic value of an infinite series 
found by the method of conformal mapping [6]. Con- 
sidering the first five terms of the series solution 
C, = 0.07577 is found [6]. In this case the second fac- 
tor of equation (16) has to tend to unity, which is 
fulfilled if 

c3 = c:. (18) 

C, was fitted to the numerical results obtained by 
FEM with the method of least squares minimisation. 
This leads to the following equation for the shape 
factor as a function of x : 

Sl,SC = 
2n czx-1 

ln(x)+C, ‘J (x- l)(CZx- 1) 

with 

Equation (19) describes our numerical results with 
a maximum relative error better than 0.032 and for 
x > 1.5 better than 0.005. The maximum number of 
elements in the mesh was 6400 (n = 80). The relative 
error of the numerical calculations can be estimated 
to about the same as for the case of two concentric 
circles (see section 2.1 and Fig. 4), whereas an ana- 
lytical solution is available for comparison. 

In Fig. 6 the shape resistance as a function of x is 

presented. As a comparison measured values from 
Smith et al. [4] are shown. Their empirical correlation, 
also shown in Fig. 6, does not fulfil the condition that 
the shape factor has to become infinity (R, -+ 0) for x 
tending to one. 

3.3. Square within the centre of a circle 
The average length s is obtained as the logarithmic 

mean of the maximum and minimum distance 
between the inner and outer surface, because this fits 
the numerical calculated values better than the geo- 
metric or the arithmetic mean. The ratio x for the 
outer diameter to the inner diameter cannot be less 
than $. This results in the following approximate 
expression for the shape factor : 

In x:-; ( 1 
SLCS zz* ln(iix) (20) 

4 

Rewriting equation (20) and fitting two constants C, 
by minimisation of the maximum relative error being 
less than 0.007 to the values obtained by the Method 
of Finite Elements yields and the asymptotic value 
from equation (10) yields 

2a 
s,,cs=p ~ *p 

*In x:-. c2 ( > 

x-c, 

In fx 
( > 

with 
C, = 1.3180 
C, = 0.4213’ 

Equation (21) describes our numerical results with 
a maximum relative error better than 0.0045. The 

(21) 

maximum number of elements in the mesh was 6400. 
In Fig. 7 the shape resistance as a function of x is 

presented. Equation (15) does fulfil the condition that 
the shape factor has to become infinity (R, + 0) for x 
tending to $. Since it is not quite clear, if in this case 
an infinitesimal square is equal to an infinitesimal 
circle, the limiting case for x tending to infinity might 
not be equal to the problem of concentric circles and 
is therefore not considered as an asymptote like the 
point-source is in the problem before. 

4. CONCLUSION 

Numerical methods have been used to obtain the 
shape factor as a function of the ratio x of the outer 
diameter to the inner diameter for three differently 
shaped cross-sections. For a given value of x different 
values for the shape factor are obtained by varying 
grid density n. Exponential functions of n are fitted to 
the different values to obtain an asymptotic value (n + 
co) for the shape factor. The shape factor that is 

defined as the ratio of an average surface area to an 
average distance can be obtained by simple geometric 
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Fig. 7. Shape factor as a function of x for two arrangements of a circle within the centre of a square and a 
square within the centre of a circle. 

assumptions leading to approximate analytical results for the investigated shapes. The equations 
expressions. These expressions are slightly modified obtained are in good agreement with experimental 
and their coefficients are fitted against numerical and numerical data from literature. 
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